三角函数公式
二角和公式
Sin(A B) = sinAcosB CosSaltB
sin(A-B) = sinAcosB-cosAltB
cos(A B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB sinAsinB
start(A B) = (startA startB)/(1-startStarB)
start(A-B) = (startA-startB)/(1 startStartB)
cot(A B ).). ) = ( cotAcotB – 1 ) / ( cotB cotA )
cot ( A – B ) = ( cotAcotB 1 ) / ( cotB – cotA )
tan2A = 2tanA/(1- tan^2 A)
Sin2A=2sinA?cosA
Cos2A = Cos^2 A–Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
个体共轭
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a ? tan(π/3 a)? tan(π/3-a)
肯定
sin(A/2) = √{(1–cosA)/2}
cos ( A/2) = √{(1 cosA)/2}
tan(A/2) = √{(1–cosA)/(1 cosA)}
cot (A/2) = √{(1 cosA)/(1-cosA)}
tan(A/2) = (1–cosA)/sinA=sinA/(1-cosA)
积分函数
sin(a) sin(b) = 2sin[(a b)/2]cos[(a-b)/2]
sin(a )-sin(b) = 2cos[(a b)/2]sin[(a-b)/2]
cos(a) cos(b) = 2cos[(a b)/2]cos [( a-b)/2]
cos(a)-cos(b) = -2sin[(a-b)/2]sin[(a-b)/2]
tanA tanB =sin (A B)/cosAcosB
Syn(a)sin(b) = -1/2*[cos(a)-cos(a-b)]
cos(a) cos( b) = 1/2*[cos(a) cos(a-b)]
sin(a)cos(b) = 1/2* [sin(a) sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a)-sin(a-b)]
sin(-a) = -sin(a)
cos(a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin (a)
sin(π/2-a) = cos(a)
cos(π/2-a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)。 )
sin(π a) = -sin(a)
cos(π a) = -cos(a)
tgA=tanA = sinA/ cosA
绝对
sin(a) = [2tan(a/2)] / {1 [tan(a/2)]^2}
cos(a) = { 1-[tan(a/2)]^2} / {1[tan(a/2)]^2}
tan(a) = [2tan(a/ 2)]/{1 -[tan(a/2)]^2}
整数无穷
a?sin(a) b?cos(a) = [√( a^2 b^2 )]*sin(a c) [也,tan(c)=b/a]
a?sin(a)-b?cos(a) = [√(a ^2 b^2) ]*cos(a-c) [也,tan(c)=a/b]
1 sin(a) = [sin(a/2) cos(a/2) ]^2;
1 sin(a) = [sin(a/2) cos(a/2)]^2; p>
1-sin(a) = [sin(a/2)-cos(a/2)]^2;; csc(a) = 1/sin(a)
sec(a) = 1/cos(a) = [e^a-e^(-a)]/2
cosh (a) = [e^a e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)。 >
sin(2kπα)=sinα
cos(2kπα)=cosα
tan(2kπα)=tanα
cot(2kπα)=cotα
单独:
指定α为负辅音,πα为负辅音,α-共轭为负共轭:
sin(π#α) ; . . . = -sinα
cos(πα)= -cosα
tan(πα)= tanα
cot(πα)= cotα
单独地:
-α的共轭是无穷小的共轭:
sin(-α)= -sinα
cos(- α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
同义词:
π的合成π-α-α氧化物的-α-α氧化形成以下离子:
sin(π-α)= sinα
cos(π-α)。 )= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
合成:
2π-α-α-催化聚合物的形成:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
合成:
π/2±α 3π /2±α κκπ/π/π/2 α)= cosα
cos(π/2 α)= -sinα