dⅹ²/dⅹ=2ⅹ
dy²/dⅹ,令μ=y²→
dμ/dx=(dμ/dy)(dy/dⅹ)=2y(dy/dⅹ)
ⅹ² y²=4→
dⅹ²/dⅹ dy²/dⅹ=d4/dⅹ→
2ⅹ 2ydy/dⅹ=0→
dy/dⅹ=-ⅹ/y
点A(1,√3)是圆上的一点,那么这个点的斜率是dy/dⅹ=-ⅹ/y=- 1/ √3→
点正切为(y-√3)/(ⅹ-1)=-1/√3, →y=-(√3/3)x 4√3/ 3
2y siny=(x²/π) 1→
d(2y)/dⅹ d(siny)/dⅹ=
d(ⅹ²/π )/ dⅹ d(1)/dⅹ→
2dy/dⅹ cozydy/dⅹ=2ⅹ/π→
d(2dy/dⅹ)/dⅹ
d(cozydy/dⅹ)/dⅹ=d(2ⅹ/π)/dⅹ
→2d²y/dⅹ² ds/dⅹ=2/π①
s=cozydy/dⅹ
令 u=cosy,m=dy/dⅹ→s=um
ds/dⅹ=mdu/dⅹ udm/dⅹ=
(dy/dⅹ)(du /dⅹ ) cosyd²y/dⅹ²
du/dⅹ=dcosy/dⅹ=
(dcosy/dy)(dy/dx)=-sinydy/dⅹ→
ds /dⅹ=
-siny(dy/dⅹ)² cosy d²y/dⅹ²→① is
d²y/dⅹ²(2 cozy) -siny(dy/dⅹ)²=
π/2(d²y/dⅹ²不同于(dy/dⅹ)²)