大家好,这里是Ferry School,很高兴在这里和大家分享我的知识。 我不知道你是如何准备期末考试的。 如果您现在不开始准备考试,您可能无法在考试结束时完成考试。
今天这门课,我们就带大家学习一下对数函数的基本考点。 数值解。
对数函数的形式为:f(x)=log a(x)。
A为基数,取值范围为(a?大于0,a不等于1)
x 是实数。
底数和实数说清楚了,再来说说对数函数的定义域。
由于任何正数的幂都是正数,所以对数函数中的实数是正数,即对数函数的定义域是x>0。
对数函数的取值范围
对数函数的取值范围为R。
我们将结合实例进行说明:如lg 10= 1.
有两种特殊功能。 让我们来谈谈它。 以10为底时,对数函数记为lg。 当底数为自然数e时,其对数函数记为l n。
对数函数求解方法:底数的多少次方等于实数,则对数函数的值是。
比如上面的lg 10等于log 10(10),意思是10的多少次方等于10,答案就是1。
在同 式,可得:lg(0.1)=–1。 通过这个对数的计算,我们发现对数的值可以是整数,也可以是负数。 而从指数函数的定义域,我们也可以得到对数函数的取值域为R。
对数函数计算公式
公式1:实数相乘为 等于对数的加法。
log a(MN)=log a(M) log a(N),其中M和N为正数。
公式二:实数相除等于减对数
log a(M/N)=log a(M)-log a(N),其中M和 N 为正数。
公式三:对数的加法等于实数的乘法
log a(M) log a(N)=log a(MN),其中M和N 是正数。
不管公式是什么格式,大家一定要牢记正反方向,不然反着看就写不出来了。
例如:lg 2 lg 5=lg 10=1。
公式四:对数减法等于实数除法
log a(M)-log a(N)=log a(M/N),其中M和N为 正数。
例如:lg 20-lg 2=lg 10=1。
公式5:计算底数与实数的幂
log a(M)的n次方=n乘以log a(M),M为正数 数字。
例如:lg(10的三次方)=3乘以lg 10=3。
公式6:幂的逆运算
n次log a(M)=log a(M)的n次方,M为正数。
例如:3乘以lg 10=lg(10的三次方)=3。
公式七:底变公式
log a (M) = lg M/lg a(M为正数,a为正数>0不为1);
例如:log 3(9)=lg 9/lg 3=2。
请务必牢记以上公式,否则考试时会出现计算题错误的情况。
时间紧迫,我们就把这门课程分享给大家,我们下期再见。 如果您有任何问题,请在下方留言,我们将尽快给您满意的答复。
免责声明:本文为摆渡学院原创文章,未经作者同意,不得转载、抄袭。